Enthalpies of Activation for the Iron(II)-Iron(III) Redox Reaction at Platinum **and Palladium Electrodes in Chloride and Sulphate Media**

By **FRANK R. SMITH*** and **CHUNG-SIN Su**

(Chemistry Department, Memorial University of Newfoundland, St. John's, Newfoundland, Canada)

Summary Exchange current densities and enthalpies of **ALTHOUGH** redox reactions at electrodes have been studied activation for the Fe²⁺-Fe³⁺ redox reaction depend on theoretically,¹ few measurements of ΔH ² are available. The the nature of the metal electrode in sulphate medium, Fez+-Fe3+ reaction at Pt and **Au** has been studied at one ΔH^{\dagger} being 6.0 kcal g ion⁻¹ at Pt and 8.5 kcal g ion⁻¹ at temperature,² and the temperature dependence of exchange Pd; in 6M HCl, however, ΔH^{\dagger} is almost independent of current density (i_0) has been ex Pd; in 6x HCl, however, ΔH^{\ddagger} is almost independent of current density (i_0) has been examined using Pt the metal, being **4.0** and **3.6** kcal *g* ion-1, respectively, in perchlorate mediums and more recently with Pt, Pd, the metal, being 4.0 and 3.6 kcal g ion⁻¹, respectively, in perchlorate medium³ and more recently with Pt, Pd, at Pt and Pd. Rh, Ir, and Au in sulphate medium.^{4,5} In this instance,^{4,5}

System		i_0 (mA cm ⁻²)				ΔH‡	
		25 °C		50 °C		$(kcal g ion-1)$	
		Ref. 5	Present work	Ref. 5	Present work	Refs. 4.5	Present work
SO,2-	Pt	$8-0$	7.5	$18 - 0$	16·5	5.0	$6.0 + 0.5$
medium	Pd	12-5	1.0	$16-5$	3.0	$2 - 4$	$8.5 + 0.1$
CI-	Pt	14	35.5		53	\sim	$4.0 + 0.1$
medium	Pd	150	27 _b	--	44c		$3.6 + 0.6$

TABLE

 B^{8} [Fe³⁺] = [Fe³⁺] = 0.1M. **b** 41 mA cm⁻², including Pd dissolution. **C** 74 mA cm⁻², including Pd dissolution.

 ΔH^{\ddagger} was claimed to be *independent of the metal*, with values of *5* to **6** kcal *g* ion-l, except that Pd anomalously gave $\Delta H^{\sharp} = 2.4$ kcal g ion⁻¹. However i_0 showed strong dependence on the metal and a linear relationship of $\ln i_0$ with electronic work function was proposed.^{4,5} Different catalytic effects of Cl⁻ ion on i_0 were reported for Pt, Pd (Table) and Au, but no ΔH^* 's were obtained for chloride medium.

Figure 1 indicates that, in sulphate medium, mass transport hindrance was negligible, while for **Pt** in chloride a current *us.* rotational speed plateau is almost reached at 8000 rpm. Only for Pd in chloride does the rate (i_0) depend linearly on the square root of rotational speed indicating substantial transport control at up to **8000** r.p.m.

Arrhenius plots ($log_{10}i_0$ vs $1/T$) for 25--55°C, shown in Figure *2,* enable the enthalpy of activation of both cathodic and anodic reactions at the equilibrium potential $(\eta = 0)$ to

 7.8

 2.60

 2.40

2.20

FIGURE **1.** *Dependence of exchange current densities (in* **A** cm^{-2}) at ca. 25⁵C on rotational speed for $0.1M$ $Fe^{2+}-0.1M$ Fe^{3+} *in acidic chloride and sulphate medium of equal ionic strength. (A)* **Pd** *in chloride (including metal dissolution); (B)* Pt *in chloride;* (C) Pt *in sulphate; (D)* **Pd** *in sulphate.*

The i_0 's (see Table) were obtained with a rotating disc electrode,6 used at its maximum rotational speed (8000 r.p.m.) to minimise mass transport overpotential. The value of i_0 was calculated, using $i_0 = iRT/\eta F$, from linear curves between current density *(i)* and overpotential *(n)* obtained potentiostatically for $-5mV < \eta < 5mV$. Solutions $0.1M$ Fe²⁺ and $0.1M$ Fe³⁺ in each case, in 6 M HCl or $1.92M$ H_2SO_4 , were purified by 48h pre-electrolysis at *⁵⁵***"C** using Pt foil electrodes and **N2** stirring. Electrodes of 2mm diameter rod were assembled in Kel-F rods, cleaned in solvents and in triple-distilled water and activated in $3M H_2SO_4$ immediately before use, by generating and reducing a thin adsorbed oxygen layer.'

cm-2) for **0-1~ Fe2+-O*lM Fes+** *in acidic chlovide and sulphats medium of equal ionic strength. (A)* **Pd** *in chloride, uncorrected for electrode dissolution; (B)* Pt *in chloride;* (C) **Pd** *in chloride, corrected; (D)* Pt *in sulphate; (E)* **Pd** *in sulphate.*

be obtained⁸ as $\Delta H_{\eta=0}^{\ddagger} = - (2.3 \text{R}/F) [\partial \log_{10} i_0/\partial (1/T)].$ **A** corrected plot is also shown for the Pd-Cl- case, because electrode dissolution, indicated by the temperaturedependent shift of equilibrium potential in this system, was occurring and had to be allowed for. Dissolution alone **was** measured at 8000 r.p.m. in *pure* 6M HCl, at the "observed" $Fe²⁺-Fe³⁺$ zero-current potentials at each temperature.⁹ Corrections for electrode roughening and possible retardation of the redox reaction were not attempted.

It is evident that both ΔH^* and i_0 depend on the metal when interfacial processes control the current *(SO*²⁻ case),

 $0 - 04$

J.C.S. **CHEM. COMM., 1972 161**

in disagreement with earlier work. $4,5$ Further, the solution phase affects the values of i_0 and ΔH^{\ddagger} , the acceleration in the C1- system resulting in at least partial transport control with correspondingly low values of ΔH^{\sharp} . The condition of the electrode also affects i_0 and ΔH^{\ddagger} , a dirty Pt electrode exhibiting lower i_0 's and higher ΔH^{\dagger} (> 6 kcal). Deactivation of clean electrodes in insufficiently purified solution was accelerated at higher temperatures and resulted in time-dependent Arrhenius plots, the rising *T* plot leading to an apparently lower ΔH^{\ddagger} than the true value.⁹

The table indicates the catalytic effect of chloride in our work to be 5-fold at Pt and 25-fold at Pd at 25 "C, falling to 3-fold and 15-fold, respectively, at 50 °C. Bockris et al.⁵ obtained 2-fold at Pt and 12-fold at Pd (not 50-fold as stated in ref. **4),** both at 25 "C.

Solution composition affects reaction in two possible ways: (i) A bulk medium effect-in 6M HCl, the chlorocomplexes are preponderant¹⁰ (of $0.1M$ Fe³⁺ salt added, 0.053_M becomes FeCl₂, 0.037_M FeCl₃ and 0.009_M FeCl²⁺), complexing being less strong in **H2S04.** The presence of a small strongly electronegative atom such as C1 in the chlorocomplexes may result in a more rapid electron exchange with the metal through a process similar to "homogeneous" bridging. 11

(ii) An electrode effect-specific adsorption of anions by the metal could facilitate closer approach of the ion's co-ordination sphere. In our concentrated media and at the Fe2+-Fe3+ equilibrium potential, specific adsorption on all noble metals will be substantial-possibly reaching saturation for the more strongly adsorbed Cl- ion.¹²

Evidence favourable to the second possibility is the persistence **of** higher electrode activity in **S042-** after previous exposure to the Fe²⁺, Fe³⁺, Cl⁻ system.⁹ Specific adsorption of halide ions on noble metals is known to be only slowly reversible.12

The support of the National Research Council of Canada is gratefully acknowledged.

(Received, October **19th, 1971;** *Corn.* **1829.)**

1 W. L. Reynolds and R. W. Lumry, "Mechanisms **of** Electron Transfer", The Ronald Press, New York, **1966;** R. **A.** Marcus, *Electrochim. Ada,* **1968, 13, 995;** V. G. Levich, in "Physical Chemistry, An Advanced Treatise", ed. H. Eyring, Academic Press **1970,** Vol. **IXB, p. 985.**

² See e.g. N. Tanaka and R. Tamamushi, *Electrochim. Acta*, 1964, 9, 963; S. Barnartt, *Canad. J. Chem.*, 1969, 47, 1661.
³ J. E. B. Randles, *Trans. Faraday Soc.*, 1952, 48, 937.
⁴ J. O'M. Bockris, R. J. Mannan, an

ectroconemistry, Pienum Press, New York, 1970, Vol. 2, p. 1146.

• R. J. Mannan, Ph.D. Thesis, University of Pennsylvania 1967, 13, 333.

• J. Wojtowicz and B. E. Conway, *J. Electroanalyt. Chem.*, 1967, 13, 333.
⁷ F. G.

-
- J. E. B. Randles, *Trans. Furaday Soc.,* **1952, 48, 828.**

C. S. Su, unpublished work.

¹⁰Calculated from J. Silverman and **R.** W. Dodson, *J. Phys. Chcm.,* **1952,** *56,* **846;** see also L. G. Sillen and **A.** E. Martell, "Stability Constants **of** Metal Ion Complexes", *Chcm. Soc. Special Publ.* No. **17, 1964.**

¹¹ B. J. Zwolinski, R. J. Marcus, and H. Eyring, *Chem. Rev.*, 1955, 55, 157.
¹² See *e.g.* P. Delahay, "Double Layer and Electrode Kinetics", Interscience Publishers, John Wiley, New York, 1965, p. 134.